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a b s t r a c t

The only acute treatment of ischemic stroke approved by the health authorities is tissue

recombinant plasminogen activator (tPA)-induced thrombolysis. Under physiological condi-

tions, tPA, belonging to the serine protease family, is secreted by endothelial and brain cells

(neurons, astrocytes, microglia, oligodendrocytes). Although revascularisation induced by

tPA is beneficial during a stroke, research over the past 20 years shows that tPA can also be

deleterious for the brain parenchyma. Thus, in this review of the literature, after a brief

history on the discovery of tPA, we reviewed current knowledge of mechanisms by which

tPA can influence brain function in physiological and pathological conditions.

# 2015 Elsevier Masson SAS. All rights reserved.

r é s u m é

Le seul traitement aigu autorisé de l’accident vasculaire cérébral ischémique est la throm-

bolyse par l’activateur tissulaire du plasminogène recombinant (tPA). Le tPA est une sérine

protéase sécrétée de manière physiologique par les cellules endothéliales et cérébrales

(neurones, astrocytes, microglie, oligodendrocytes). Bien qu’il existe un effet bénéfique du

tPA dans le cadre de la revascularisation cérébrale après AVC ischémique, les recherches de

ces 20 dernières années montrent que le tPA peut-être également délétère pour le paren-

chyme cérébral. Ainsi, dans cette revue de la littérature, après un bref rappel historique sur

la découverte du tPA, nous passerons en revue les connaissances actuelles des mécanismes

par lesquels le tPA peut influencer le fonctionnement cérébral en conditions physiologique

et pathologique.
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1. The history of tPA

In ancient Greece, Hippocrate had already observed that blood

from dead people was not clotted. It is in 1844 that Andral put

forward the idea that clotted blood can become again liquid,

giving to the scientific community the first data on the

fibrinolytic system [1]. In 1893, Denys & Marbaix and Dastre

determined that this process was the consequence of a

proteolytic mechanism that they name fibrinolysis (for fibrin

and lysis) [2,3]. In 1902, Conradi brought the first observations

of degradation of blood clots by adding extracts of different

organs [4]. In 1904, Hedin identified a proteolytic activity in the

serum globulin fraction, that was later identified as the

fraction containing the plasminogen, the precursor of the

enzyme responsible of the fibrin clot lysis, plasmin [5]. This

inactive precursor plasminogen presents in the circulation can

be activated by bacterial extracts (the proteins involved in this

process were identified later as streptokinase and staphylo-

kinase). This observation was later confirmed and refined by

Fleisher & Loeb in 1915 and by Astrup in 1947, providing the

concept of thrombolysis (degradation of pre-formed clots)

[6,7]. It was only in 1979 that the effector of this cascade of

events, tissue-type plasminogen activator (tPA) was purified

and characterized first in circulation and then in the uterus

[8,9]. The first use in humans was conducted in 1981 in

Rotterdam by W. Weimar on patients with thrombosis of the

renal vein. This led, in 1983, to the cloning of tPA and its

recombinant production [10]. 32 years later, tPA is now used in

clinic to promote fibrinolysis, especially at the acute phase of

ischemic stroke either alone [11] or combined with thromb-

ectomy [12]. In parallel of its well-known roles in the

circulation, tPA also displays critical functions in the brain

parenchyma. Here, we reviewed our present knowledge of the

mechanisms and functions of tPA in the central nervous

system (CNS), both in physiological and pathological condi-

tions.

2. Structure and functions of tPA

tPA is a glycoprotein belonging to the superfamily of serine

proteases and is a member of the chymotryspin family. In

1983, Pennica has cloned and produced a functional recombi-

nant tPA, composed of 527 amino acids, with a molecular mass

of 70 kDa. The access to the tPA nucleotide sequence has

allowed the identification of potential glycosylation sites and

disulfide bridges, and therefore the determination of its three

dimensional structure [10]. tPA is a protein composed of five

domains, maintained in its conformation thanks to 17

disulfide bridges (Fig. 1A). The N-terminal end of tPA starts

by a finger domain (also called fibronectin domain, Fig. 1A–C).

This domain is involved in the binding of tPA to fibrin,

resulting in the formation of a ternary complex with

plasminogen [13]. Through this finger domain tPA can also

interacts with several membrane receptors including the Low

Density Lipoprotein Receptor-related Protein (LRP) [14] and

Annexin II [15]. The second domain, called epidermal growth

factor-like domain, due to its homology with the epidermal

growth factor (EGF, Fig. 1A–C), allows tPA to activate EGF
receptor [16]. The sequence continues by the Kringle 1 and the

Kringle 2 domains (respectively: K1 and K2, Fig. 1A–C). These

domains are characterized by an active site having a high

affinity for lysine (lysine binding site; LBS), which is composed

of two hydrophobic aromatic amino acids (Trp242 and Trp253)

forming a pocket in the tertiary structure of the protein. The

precise role of the K1 domain is not well known. Although its

LBS domain is not functional, the glycosylation at the Asp117 is

important for the uptake-clearance of tPA by liver endothelial

cells via the mannose receptor [17]. The K2 domain contains a

functional LBS. The K2 domain is reported to be involved in the

capacity of tPA to bind and activate substrates and/or

receptors such as plasminogen, the PDGF-CC (Platelet Derived

Growth Factor-CC) [18] and the NMDAR (N-methyl-D-Aspar-

tate Receptor) [19,20]. All these domains (Finger, EGF, K1 and

K2) form the heavy chain of tPA (A-chain). The second chain,

the light chain (B-chain), consists of a single large domain

containing the catalytic activity of the protease (Fig. 1A–C). The

catalytic triad is composed of the amino acids His322, Asp371

and Ser478 [10,21], that enables the activation of plasminogen

to plasmin. Like all serine proteases, tPA exists in two forms:

single chain tPA (sc-tPA) and two chains (tc-tPA). In contrast to

the other known serine proteases, which are inactive under

their single chain form, the two forms of tPA are proteolyti-

cally active [22] (Fig. 1D). The processing of sc-tPA into tc-tPA is

mediated by other proteases such as plasmin [23] or kallikreins

[24,25]. In the absence of an allosteric regulator such as fibrin,

tc-tPA is catalytically more active than sc-tPA [23,26].

However, in the presence of fibrin, both sc-tPA and tc-tPA

display the same catalytic or fibrinolytic activity [27].

3. Cellular localization of tPA in the brain

tPA was primarily identified in the blood circulation [8,28].

In this compartment, it is mainly produced and released

by endothelial cells [29]. In the brain parenchyma, tPA has

been reported to be expressed and synthesized by most of the

cell types: astrocytes [30], neurons [31] (Figs. 2A and 3),

oligodendrocytes [16] and microglia [32]. In neurons, the

presence of tPA can be observed in dendrites and synapses

[33], where tPA is stored in pre-synaptic vesicles [34] and

released in the synaptic cleft following a depolarization [35]

(Fig. 2A). Astrocytes are capable to regulate the quantity of tPA

at the synaptic cleft. Indeed, tPA can be endocytosed by

astrocytes involving its Finger domain and mediated by LRP

receptors [36] (Fig. 2A). Interestingly, astrocytes are also

capable to release the tPA previously recaptured by a

mechanism involving PKC through a mechanism dependent

of the activation of kainate receptors by the glutamate present

at the synaptic cleft [36] (Fig. 2A).

4. tPA inhibition in the brain

Only few studies have correlated the levels of tPA mRNA with its

enzymatic activity in the brain parenchyma. For example,

although tPA mRNA can be detected in the entire hippocampus,

no proteolytic activity can be found in the CA1 region [37]. This

strongly suggests the presence and differential expression of



Fig. 1 – Structure and functions of tissue-type Plasminogen Activator (tPA). (A) Structure of tPA. The 527 amino acids

sequence of the protein can be subdivided in five domains that are depicted as follow: ‘Finger domain’ is in light grey, ‘EGF-

like domain’ is in dark green, ‘Kringle 1’ domain is in light green, ‘Kringle 2’ domain is in blue, and finally ‘serine protease’

domain is depicted in black. The 17 disulfure bridges are depicted by grey lines. (B) tPA is composed of two chains: the

heavy chain (also called A-chain), starting at the amino-terminal end of the protein and containing the ‘Finger’, ‘EGF-like’,

‘Kringle 1’ and ‘Kringle 2’ domains, and the light chain (also called B-chain), ending at the carbocyl-terminal end of the

protein and containing only the ‘serine protease’ domain. Plasmin and kallikreins can cleave tPA at the junction between

these two chains. (C) Main roles of the five domains. (D) The cleavage of tPA by plasmin and kallikreins allow the

conversion of the ‘single chain tPA’ (sc-tPA) form into a ‘two chains tPA’ (tc-tPA) form. In contrast of the other serine

proteases, the two forms of tPA are proteolytically active. Numbers in brackets refer to references.
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inhibitors of tPA proteolytic activity in these regions: the serine

proteases inhibitors (serpins). Currently, four serpins have been

described to inhibit tPA proteolytic activity: type 1 and 2

plasminogen activator inhibitor (PAI-1 and -2), neuroserpin (NS)

and the protease nexin-1 (PN-1) [38,39]. In the brain paren-

chyma, PAI-1 and NS are the two main inhibitors of tPA (Fig. 2B).

PAI-1 is a suicide inhibitor that forms irreversible complexes

with tPA [40]. In the brain parenchyma, PAI-1 is expressed at

very low levels by neurons and astrocytes under physiological

conditions [30,41], but dramatically over-expressed by reactive

astrocytes [42,43]. In contrast of PAI-1, NS is highly expressed

under physiological conditions by both neurons and astrocytes

[38,42]. NS also acts as a substrate of tPA but without formation

of an irreversible protease-serpin complex, as previously

reported for tPA and PAI-1[44]. In the brain parenchyma, NS

mRNA are detected from the early embryonic to adult stages,

and are widely distributed in numerous brain structures [45].

Interestingly, accumulation of NS in neuronal bodies is

associated with a familial encephalopathy, named FENIB

(Familial Encephalopathy with Neuroserpin Inclusion Bodies),

dues to the presence of a mutated form of NS [46]. NS have been

also described to play a role in the etiology of epilepsy and

schizophrenia [47,48].
5. tPA-dependent functions in the brain
parenchyma

5.1. Development and cellular migration

tPA is highly expressed in embryonic regions undergoing cell

migration and tissue remodeling (Fig. 4). For example, Krystosek

and Seed evidenced that tPA was secreted by granule neurons in

the cerebellum during development [49]. In this structure, the

expression of tPA mRNA and tPA proteolytic activity closely

correlate with the neuronal migration phase [50,51] (Fig. 4).

Accordingly, mice lacking tPA display a delayed neuronal

migration when compared with their wild type littermates

[52]. A recent study also showed that Pituitary adenylate cyclase-

activating polypeptide (PACAP) induces tPA release implicated in

the extracellular matrix (ECM) degradation, during the neuronal

migration [53].

5.2. Long-term potentiation

Chemical or high frequency stimulation of hippocampal

neurons led to an increase of synaptic transmission efficiency.



Fig. 2 – Release, post-synaptic interactions, recapture and inhibition of tPA in the brain parenchyma. A. Release and

recapture of tPA at the synaptic cleft. tPA is stored in neuronal presynaptic vesicles (1) and released into the synaptic cleft

conjointly to glutamate following a neuronal depolarization (2). Once into the synaptic cleft, tPA can mediate its effects by

different mechanisms on different postsynaptic targets (3). In addition, astrocytes are capable to regulate the quantity of

tPA at the synaptic cleft to avoid an excess of tPA. Indeed, they can endocytose tPA by a mechanism involving its Finger

domain and mediated by astrocytic LRP receptors (4), and release it by a mechanism involving PKC signaling pathway and

dependent of kainate receptors activation by glutamate (5). B. PAI-1 and NS are the two main inhibitors of tPA in the brain

parenchyma: mechanisms of inhibition, cellular and tissular synthesis and modified expression in different brain

pathologies. EGF-R: Epidermal Growth Factor receptor; Kainate-R: Kainate receptor; LRP-R: Low Density Lipoprotein

Receptor-related Protein receptor; MMPs: matrix metalloproteinases; NMDA-R: N-methyl-D-Aspartate Receptor; PDGFR-a:

Platelet-Derived Growth Factor Receptor a; NS: Neuroserpin, PAI-1: Type 1 Plasminogen Activator Inhibitor. Numbers in

brackets refer to references.
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This phenomenon, initially discovered in the hippocampus

and called long-term potentiation [54] (LTP), is considered as

the molecular and cellular support of learning and memory

processes [55]. The induction of LTP on hippocampal slices

leads to a rapid increase of tPA mRNA levels in granular cells of

the dentate gyrus [56]. On hippocampal slices, administration

of tPA inhibitors (PAI-1 or tPA stop) was reported to inhibit the

late phase of LTP either induced by forskolin or a tetanic

stimulation [57]. In addition, tPA deficient mice present an

altered late LTP in CA1 [58], based on modification of the

GABAergic neurotransmission [59]. tPA-dependent ECM

degradation [57], its ability to activate the neurotrophic factor

proBDNF into mBDNF [60] and to cleave reelin [61], are three

putative mechanisms through which tPA could contribute to

synaptic plasticity and tissue remodeling. Interestingly, only

the sc-tPA is capable to increase the late phase of LTP, a

mechanism dependent of NMDAR [62] (Fig. 3).

5.3. Behavioral processes

According to its localization in the hippocampus, and to its

involvement in synaptic plasticity, tPA has been described as

an important actor of spatial learning (results summarized in
Fig. 4 and Table 1). When tested in an object recognition task,

tPA deficient mice display an impairment to react to a spatial

configuration change, without impairment of the detection of

non spatial changes [63]. Similarly tPA deficient mice show

impaired spatial learning abilities in a two-trial place

recognition task in a Y-Maze [64], as well as in a Morris water

maze task [65]. In the hippocampus, the interaction between

tPA and the NMDA receptor seems to be the key mechanism by

which tPA play its role in spatial learning [64,66].

tPA is also expressed in the amygdala and in the Bed

Nucleus of the Stria Terminalis (BNST) [67–69]. According to

these localizations, tPA plays roles in stress response, anxiety

and learned fear (results summarized in Table 1). For instance,

tPA is involved in the acquisition and retention of a contextual

and/or cued learned fear, even if some results found in the

literature are sometimes ambiguous [58,63,70]. tPA is also

involved in the mediation of stress effects. Although restraint

stress or Corticotrophin-Releasing Factor-induced response

lead to an exacerbation of anxiety-like behaviors in wild type

animals, all these effects are abrogated in tPA deficient mice

[67–69]. Accordingly, NS deficient mice display an increased

anxiety-like behavior, assessed using a zero-maze task,

compared to their wild-type littermates [71].



Fig. 3 – Source of tPA in the brain, targets and effects. tPA can be synthesized and released by most of the brain cells. Once

released, it can be fixed to these same cells via different receptors (in brackets). The interaction of tPA with these receptors

leads to different effects that can be beneficial (in green) or deleterious (in red). The exogenous tPA injected for thrombolysis

after a ischaemic stroke is capable of binding to these same cells through the same receptors and have similar effects. EGF-

R: Epidermal Growth Factor receptor; LRP-R: Low Density Lipoprotein Receptor-related Protein receptor; NMDA-R: N-methyl-

D-Aspartate Receptor. Numbers in brackets refer to references.
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5.4. Neuronal death and survival

Several studies have reported that neuroserpin and PAI-1

protected neurons against NMDARs over-activation-induced

toxicity [30,72,73]. Accordingly, exogenous tPA has been reported

to induce excitotoxic neuronal death mediated by over-activa-

tion of NMDARs [74,75] (Figs. 3 and 4), by plasmin-dependent or -

independent mechanisms [62,74,76]. For instance, tPA is capable

to interact with the GluN1 subunit of NMDAR via its LBS localized

on the K2 domain [19,20]. This interaction allows the cleavage of

the amino-terminal domain of the GluN1 subunit, leading to the

enhancement of NMDAR signaling by sc-tPA [74,77]. However,

other authors did not detect such tPA-mediated cleavage of the

GluN1 subunit, despite enhancement of NMDAR function by

exogenous tPA in cortical cultures [78]. In addition, LRP receptors

could act as tPA co-receptors, which in turn enhance Ca2+ influx

through NMDARs [78]. Interestingly, in response to tPA, LRP1 has

been described as able to assemble a co-receptor system to

initiate cell-signaling; this system is composed of LPR1, NMDAR,

and Trk receptors [79].

However, it is interesting to note that, in addition to its role

in excitotoxic neuronal death, both in vivo, in vitro and ex vivo

studies also suggest that tPA may have pro-survival and anti-

apoptotic effects on both neurons and oligodendrocytes
[16,80–84] (Fig. 3). Two candidates have been proposed as

receptors mediating the pro-survival effects of tPA: Annexin II

and EGF receptor (EGFR) [16,81,85] (Fig. 3). Despite the

heterogeneity of the paradigms used, most of these studies

propose that these trophic effects of tPA occurs independently

of its proteolytic activity, with the activation of either PI3 K/

Akt-, AMPK- or mTor-HIF-1alpha-dependent signaling path-

ways [16,86].

Although the deleterious effects of tPA have been extensi-

vely reported from animal models (especially its neurotoxi-

city), it is still a debate in human. Only few papers have

reported indirect proofs of this neurotoxicity. For example, in

2015 Alvarez showed that thrombolysis with rt-PA may

increase the likelihood of epileptic seizures at the acute phase

of ischemic stroke patients, independently of the recanaliza-

tion rate or of symptomatic intracerebral hemorrhages [87].

This paper supports previous work from Tsirka et al. in 1995

demonstrating in preclinical models that tPA promoted

seizures [88]. Tisserand also reported, in human, that a tPA

treatment was associated with increased lesion volumes in

the grey matter and reduced damages in the white matter

following cerebral ischemia [89]. These observations are also

supported by data obtained from experimental models of

stroke [16].



Fig. 4 – tPA, a multifaceted protease with beneficial and deleterious effects. In the green circle are summarized the principal

beneficial effects of endogenous/exogenous tPA in physiological situation (on cerebral development and on the regulation

of behavorial processes) but also in pathophysiological situation like in stroke, Alzheimer disease or multiple sclerosis.

Conversely, in the red circle are summarized the main adverse effects of tPA in pathological conditions such as in stroke

and multiple sclerosis. A.b: b-amyloid peptide. BBB: Blood-Brain Barrier; rtPA: recombinant tPA. Numbers in brackets refer

to references.

r e v u e n e u r o l o g i q u e 1 7 2 ( 2 0 1 6 ) 1 8 6 – 1 9 7 191
Up to now, there is no clear clinical data to determine, in

human, whether tPA is neurotrophic or neurotoxic. Additional

studies are needed to further understand the possible

differential functions of endogenous versus exogenous tPA

on neuronal survival.

5.5. tPA and the homeostasis of the Blood Brain Barrier

In experimental models, the intraveinous administration of

rtPA 4 hours post-ischemia results in permeabilization of the

BBB [73]. The alterations of the integrity of the BBB induced by

tPA are due to different molecular mechanisms involving LRP

receptors, NMDAR and metalloproteinases (MMPs) (Fig. 3).

MMPs, including MMP-9, are overexpressed after a cerebral

ischemia [90], leading to an increased degradation of type IV

collagen, laminin and fibronectin [91]. In 2008, Cuadrado

showed that neutrophils are the main source of MMP-9

following stroke and tPA treatment, a mechanism involved in

the permeabilization of the BBB and in the occurrence of

hemorrhagic transformations [92]. By interacting with the LRP

receptors and subsequent cleavage of their ectodomain, tPA

promotes the removal of astrocytic feet from the basal lamina

and permeabilization of the BBB [83]. tPA is also capable to

interact with and activate PDGF-CC, a mechanism dependent

of both its Kringle2 domain and its catalytic activity. Then,

cleaved PDGF-CC activates PDGFR-a (Platelet Derived Growth

Factor Receptor-alpha) of perivascular astrocytes promoting

BBB leakage and bleeding [18,93] (Fig. 3). Accordingly, co-

injection of tPA with an inhibitor of PDGFR-a receptors

(Imatinib, Glivec) significantly reduced rtPA-induced hemor-

rhagic transformations [94].
Hemorrhagic transformation induced by rtPA is the most

feared complication (Fig. 4). As mentioned above, the state of

the BBB and the delay before treatment seems to play a critical

role on the intra-cerebral haemorrhage (Fig. 4). Majority of

works that have studied the haemorrhagic transformation

with intravenous tPA performed within 3 h confirmed the rate

of bleeding observed in the NINDS study: 6.4% of patient

showed a haemorrhagic transformation [11]. Others impor-

tant studies showed and confirmed that as compared to

placebo, rtPA was more frequently associated with sympto-

matic intracranial hemorrhage when thrombolysis is per-

formed between 3 and 4.5 hours after the onset of symptoms.

[95,96] (Figs. 3 and 4).

5.6. tPA and inflammation

In vivo, a late i.v. administration of rtPA (4 hours post-

occlusion) is associated, 24 hours post-ischemia, with an

overexpression of cellular adhesion molecule E- and P-selectin,

ICAM-1 which are involved in leukocyte infiltration (Fig. 4).

Compared to rtPA alone, rtPA administration combined

with the ICAM-1 inhibition reduces lesion volume (28.9 � 2.7%

versus 39.1 � 3.9%; P < 0.05) [97]. Similarly, the combined

injection of statins and rtPA 4 hours post-ischemia inhibits the

expression of MMP-9, PAR-1 and ICAM-1 and reduced the

lesion volume [98]. The interaction of the finger domain of tPA

with annexin II [85] or LRP-1 microglial receptor [99] activates

microglia, inducing the production of NO and secretion of tPA

by activated microglia [32] (Fig. 3). These processes contribute

to the worsening of brain damage. Thus, in ischemic

conditions tPA promotes the inflammatory response but is



Table 1 – Roles of tPA in behavioral processes. Numbers in brackets refer to references.

Study by Species/strains Task Results

Spatial learning

Calabresi et al., 2000 [63] tPA +/+ and tPA–/– Object recognition Hippocampal tPA is needed during spatial

learning

Benchenane et al., 2007 [64] tPA +/+ and tPA–/– Y-Maze two-trial place

recognition

Hippocampal tPA is needed during spatial

learning

tPA +/+ immunized with an

antibody blocking the

interaction between tPA and

NMDAR or with vehicle

Y-Maze two-trial place

recognition

Interaction between tPA and NMDAR in

the hippocampus is one of the

mechanism by which tPA promotes

spatial learning

Obiang et al., 2012 [66] C57BL6/J immunized with an

antibody blocking the

interaction between tPA and

NMDAR or with vehicle

Y-Maze two-trial place

recognition

Interaction between tPA and NMDAR in

the hippocampus is one of the

mechanism by which tPA promotes

spatial learning

Oh et al., 2014 [65] tPA +/+ and tPA –/– Morris water maze Hippocampal tPA is needed during spatial

learning

Stress response, anxiety and learned fear

Stress response and anxiety

Madani et al., 2003 [71] NS +/+ and –/– mice Zero-Maze NS is a determinant of anxiety level, via a

mechanism independent of tPA

proteolytic activity

Pawlak et al., 2003 [69] tPA +/+ and tPA –/– mice

subjected to acute restraint

stress

Elevated Plus Maze In the amygdala, tPA plays a key role in

the development of stress-induced

anxiety behavior by promoting synaptic

remodeling

Matys et al., 2004 [67] tPA +/+ and tPA –/– mice

injected with stress peptide

hormone CRF or with vehicle

Elevated Plus Maze In the amygdala, tPA plays a key role in

the development of stress-induced

anxiety behavior by promoting responses

to CRF

Matys et al., 2005 [68] tPA +/+ and tPA –/– mice

subjected to acute restraint

stress

Acoustic startle In the BNST, tPA mediates the

potentiation of the acoustic startle

response by stress and CRF, by promoting

neuronal activation

Contextual and/or cued learned fear

Huang et al., 1996 [58] tPA +/+ and tPA –/– mice Contextual and cued fear

conditioning

Hippocampal tPA seems to be needed for

the learning of both contexual or cued

fear, but this is gender-dependent

Calabresi et al., 2000 [63] tPA +/+ and tPA –/– mice Contextual and cued fear

conditioning

Hippocampal tPA is crucial for the

learning of a contextual fear

Barnes and Thomas, 2008 [70] Lister hooded rats injected with

an inhibitor of tPA proteolytic

activity (tPA stop) or with

vehicle

Contextual fear

conditioning

Control of pro/mBNDF ratios in the

hippocampus by tPA plays a central role

in the development/maintenance of a

learned contexual fear
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also beneficial for stimulating both macrophage migration on

the sites of axonal degeneration and MMP-9 expression, that

promotes axonal regrowth [100] (Figs. 3 and 4).

Targeting brain inflammation could be an interesting

therapeutic strategy. However, inflammation processes are

necessary to eliminate cell debris and to fight against infections,

their uncontrolled inhibition could thus be deleterious [101].

5.7. Role in axonal damage, myelinisation and
regeneration

tPA was reported protective against axonal damage and to

favour axonal regeneration through the proteolytic removal of

fibrin deposits in inflammatory conditions [102] (Fig. 4). In

neuroinflammatory conditions such as multiple sclerosis

(MS), efficient fibrin removal is impaired, and this is associated

with a decreased expression of tPA and an increased

expression of PAI-1 [103,104]. In experimental autoimmune
encephalitis (EAE, a mouse model of MS), tPA deficient mice

show more severe symptoms and impaired recovery [105,106],

whereas PAI-1 deficient mice show a delayed onset and less

severe symptoms [107]. More specifically, tPA action on axonal

regeneration is thought to involve the degradation of

chondroitin sulphate proteoglycans (CSPGs), a set of ECM

proteins with inhibitory action on axon regrowth both in vitro

and in vivo [108–110]. Thus, the combination of tPA with

chondroitinase ABC promotes axonal regeneration in experi-

mental models of spinal cord injury (SCI) [108]. In addition, tPA

has been shown to activate the CSPG-degrading protease

ADAMTS-4 (a desintegrin and metalloprotease with throm-

bospondin domains-4) following SCI, thus promoting axonal

growth and functional recovery [109]. It is also interesting to

note that tPA, through its EGF domain, was reported to display

oligotrophic functions, promoting survival of oligodendrocy-

tes, thus reducing white matter damages following cerebral

ischemia [16] (Figs. 3 and 4).
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5.8. tPA and aging

During physiological aging, the cerebral proteolytic activity of

tPA decrease [111–113]. Such modifications of the levels of tPA in

the brain during physiological aging have functional conse-

quences. For example, in the hippocampus this decrease of tPA

levels leads to spatial memory impairments [113]. Interestingly,

there is numerous links existing in the literature between the

tPA/plasminogen system, tPA inhibitors and Alzheimer Disease

(AD; Fig. 4) including activity on A-b peptide burden and

degradation (Fig. 4). For instance, plasmin has been shown to

promote Ab degradation [114–116]. In AD, a dramatic increase of

PAI-1 was reported, produced by glial cells, thus worsened the

decrease of tPA proteolytic activity occurring during physiolo-

gical aging [111,117,118] (Fig. 2). During cerebral ischemia, the

decrease of tPA with physiological aging is associated with

reduced ischemic lesion volumes in the grey matter and

worsened alterations of the white matter [16,112].

6. Conclusions and perspectives

Tissue-type plasminogen activator (tPA) is an extracellular

proteolytic enzyme that was first described for its effects on

blood coagulation and extracellular matrix homeostasis.

However, during the last twenty years, tPA has been shown

to have numerous functions in brain physiology and patho-

logy (Fig. 4). tPA can act on virtually all cell types of the brain,

including neurons, endothelial and glial cells. tPA conducts its

actions by enzymatic or growth-factor-like effects on various

molecular substrates or receptors. Its first described action

was the conversion of the zymogen plasminogen into the

active enzyme plasmin, but tPA has since been discovered

to drive multiple and sometimes even opposite effects by

interacting with or activating BDNF, NGF, PDGF-CC Annexin II,

LRP, or NMDAR (Fig. 3). It is therefore often referred to as a

‘double-edged sword’. A lot of interest has been therefore

given in the last years to the potential clinical relevance of

targeting tPA for neuroprotection or modulation of neuronal

plasticity in different diseases of the brain such as stroke,

multiple sclerosis or Alzheimer’s disease. Thus, a challenging

question is whether these effects of tPA, including neuroto-

xicity, can be exerted by exogenous recombinant tPA when

injected to stroke patients in an attempt to achieve reperfu-

sion. New therapeutic strategies for stroke are in develop-

ment. For example, safer thrombolytics have been produced

[20,62]. Antibodies have been also developed to prevent the

interaction of tPA with NMDAR capable to extend the

therapeutic window of thrombolysis when injected 4 hours

after stroke onset in mice [119]. Other approaches such as a

direct intra-arterial endovascular reperfusion of rtPA are also

promising [120]. Future therapeutic strategies for AD could

emerge via the manipulation of tPA and plasmin activity

in order to promote the degradation of Ab. In multiple

sclerosis whether tPA can help the axonal regeneration or

remyelinisation is also an opened avenue. Overall, further

studies should provide a better understanding of the complex

effects of tPA and its endogenous regulators. This should

enable a better discrimination between the different actions of

tPA. With regard to the involvement of tPA in brain diseases,
investigation on new treatments for brain pathologies should

gain from these future progresses.
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